Exam. Code : 206602
 Subject Code : 5211

M.Sc. Bioinformatics 2nd Semester

 BASIC MATHEMATICS

 BASIC MATHEMATICS}

Paper-BI-523

Time Allowed-3 Hours]
[Maximum Marks-75
Note :- Question No. 1 from Section A is compulsory. Attempt five questions from Section B, selecting one question from each unit.

SECTION-A

1. (a) If $A=\{1,2\}, B=\{3,4\}, C=\{4,5\}$, find $\mathrm{A} \times(\mathrm{B} \cup \mathrm{C})$ and show that : $(A \sim B) \times C=(A \times C) \sim(B \times C)$.
(b) Find the conjugate of $\frac{(1-\mathrm{i})^{2}}{5+\mathrm{i}}$.
(c) If $A=\left[\begin{array}{ll}2 & 5 \\ 1 & 4\end{array}\right]$ then $A(\operatorname{Adj} A)=$
(d) If \vec{a} and \vec{b} are unit vectors perpendicular to each other then find the value of $|\vec{a}-2 \vec{b}|$.
(e) Find $\lim _{x \rightarrow 0} \frac{\sin 4 x}{\sin 5 x}$.
(f) If $f(x, y)=x^{2} y+e^{x y}$, find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.
(g) Find the derivative of $(x+1)^{4 / 3}(2 x-1)$.
(h) Evaluate $\int\left(x^{2}+\frac{1}{x}+e^{3 x}\right) d x$.
(i) Find the equation of line passing through $(2,3)$ and perpendicular to the line $3 x+2 y+7=0$.
(j) Find the equation of circle whose center is same as center of $x^{2}+y^{2}-2 x+4 y+7=0$ and is of radius 4 .

$$
1.5 \times 10=15
$$

SECTION-B UNIT-I

2. (a) If $\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$ and $\mathrm{g}: \mathbb{R} \rightarrow \mathbb{R}$ are defined by :

$$
f(x)=x^{2}+3 x+1, g(x)=2 x-3
$$

Find fog and gof (the composite of f, g and composite of g, f).
(b) Define and give an example of a periodic function.
(c) Show that $\mathrm{A} \cup \mathrm{B}=\mathrm{A} \cap \mathrm{B} \Leftrightarrow \mathrm{A}=\mathrm{B}$.
3. (a) Express $\frac{2-\sqrt{3} i}{1+i}$ is the form $a+i b$.
(b) Find the multiplicative inverse of $-1+2 \sqrt{3}$ i. 4
(c) Find the square root of $11+2 \sqrt{30}$.

UNIT-II

4. (a) Prove that

$$
\left|\begin{array}{ccc}
1+a & 1 & 1 \\
1 & 1+b & 1 \\
1 & 1 & 1+c
\end{array}\right|=a b c\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)
$$

(b) If $\mathrm{A}=\left[\begin{array}{ll}3 & 1 \\ 4 & 0\end{array}\right], \mathrm{B}=\left[\begin{array}{ll}4 & 0 \\ 2 & 5\end{array}\right]$, find $(\mathrm{AB})^{-1}$.
5. (a) Find the angle between the vectors $\vec{a}=2 \vec{i}-\vec{j}+3 \vec{k}$ and $\vec{b}=6 \vec{i}-3 \vec{j}+6 \vec{k}$.

4
(b) Show that if $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$ then vectors \vec{a} and \vec{b} are perpendicular.
(c) Find the value of t such that the vectors : $2 \vec{i}-\vec{j}+\vec{k}, \vec{i}+2 \vec{j}-3 \vec{k}$ and $3 \vec{i}+\vec{j} t+5 \vec{k}$ are coplanar.

UNIT-III

6. (a) If $y=\sqrt{x}+\frac{1}{\sqrt{x}}$, show that $2 x \frac{d y}{d x}+y-2 \sqrt{x}=0$.
(b) A point moves in a fixed straight line so that $\mathrm{s}=\sqrt{\mathrm{t}}$, show that the acceleration is proportional to the cube of the velocity.
(c) If $x=\log t+\sin t, y=e^{t}+\cos t$, find $\frac{d y}{d x} . \quad 4$
7. (a) Prove that the function $f(x)=x^{3}-3 x^{2}+3 x-100$ is increasing for all real values of x.
(b) Divide 16 into two parts such that the sum of their squares is minimum.
(c) If $f(x)=\sec x+\tan x$, prove that $f^{\prime}(x)=f(x) \sec x$.

UNIT-IV

8. (a) Find the sum of the series $\frac{1}{2}+\frac{1}{3}+\frac{1}{6}+\ldots$ to 9 terms.
(b) If $3+3 \alpha+3 \alpha^{2}+\ldots \infty$ is equal to $\frac{45}{8}, \alpha>0$ then find α.
(c) Evaluate $\int \frac{2 x^{2}+x}{x-1} d x$.
9. (a) Evaluate :
(i) $\int_{0}^{2}|x-1| d x$
(ii) $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos x d x$.
(b) Find the area of the region bounded by the curves $x^{2}=4 y$, the line $x=2$ and the x-axis.

UNIT-V

10. (a) Find the equation of the straight line passing through $(2,3)$ which makes equal intercepts on the axes.
(b) Find the center of the sphere which passes through $(\mathrm{a}, 0,0),(0, \mathrm{~b}, 0),(0,0, \mathrm{c})$ and $(0,0,0) .8$
11. (a) Find the equation of the circle passing through the point $(4,5)$ and having center at $(2,2)$. 4
(b) Find the equation of the parabola whose focus is $(5,2)$ and directrix is $x-1=0$. Find also vertex and latus rectum of this parabola.

8

