Exam. Code : 206602 Subject Code: 5211

M.Sc. Bioinformatics 2nd Semester **BASIC MATHEMATICS**

Paper-BI-523

Time Allowed—3 Hours] [Maximum Marks—75

Note: - Question No. 1 from Section A is compulsory. Attempt five questions from Section B, selecting one question from each unit.

SECTION-A

- (a) If $A = \{1, 2\}$, $B = \{3, 4\}$, $C = \{4, 5\}$, find $A \times (B \cup C)$ and show that : $(A \sim B) \times C = (A \times C) \sim (B \times C).$
 - (b) Find the conjugate of $\frac{(1-i)^2}{5+i}$.
 - (c) If $A = \begin{bmatrix} 2 & 5 \\ 1 & 4 \end{bmatrix}$ then A (Adj A) =
 - (d) If \(\vec{a}\) and \(\beta\) are unit vectors perpendicular to each other then find the value of $|\vec{a} - 2b|$.
 - (e) Find $\lim_{x \to 0} \frac{\sin 4x}{\sin 5x}$

7103(2518)/CTT-37536

(Contd.)

(f) If
$$f(x, y) = x^2y + e^{xy}$$
, find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.

- (g) Find the derivative of $(x + 1)^{4/3} (2x 1)$.
- (h) Evaluate $\int \left(x^2 + \frac{1}{x} + e^{3x}\right) dx$.
- (i) Find the equation of line passing through (2, 3) and perpendicular to the line 3x + 2y + 7 = 0.
 - Find the equation of circle whose center is same as center of $x^2 + y^2 2x + 4y + 7 = 0$ and is of radius 4. $1.5 \times 10 = 15$

UNIT-I

2. (a) If $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ are defined by : $f(x) = x^2 + 3x + 1, g(x) = 2x - 3$

SECTION-B

- Find fog and gof (the composite of f, g and composite of g, f).

 6

 Define and give an example of a periodic function.
- c) Show that $A \cup B = A \cap B \Leftrightarrow A = B$.
- 3. (a) Express $\frac{2-\sqrt{3}i}{1+i}$ is the form a+ib.
 - Find the multiplicative inverse of $-1 + 2\sqrt{3}$ i. 4
 - (c) Find the square root of $11 + 2\sqrt{30}$.

(Contd.)

7103(2518)/CTT-37536 2
www.a2zpapers.com www.a2zpapers.com

ad free old Question papers gndu, ptu hp board, punjak

4. (a) Prove that

$$\begin{vmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{vmatrix} = abc \left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right). 6$$

and $\vec{b} = 6\vec{i} - 3\vec{j} + 6\vec{k}$.

are perpendicular.

cube of the velocity.

www.a2zpapers.com ad free old Question papers gndu, ptu hp board, punjab

coplanar.

7103(2518)/CTT-37536

www.a2zpapers.com

(b) If $A = \begin{bmatrix} 3 & 1 \\ 4 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 4 & 0 \\ 2 & 5 \end{bmatrix}$, find $(AB)^{-1}$.

(a) Find the angle between the vectors $\vec{a} = 2\vec{i} - \vec{j} + 3\vec{k}$

(b) Show that if $|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$ then vectors \vec{a} and \vec{b}

 $2\vec{i} - \vec{j} + \vec{k}$, $\vec{i} + 2\vec{j} - 3\vec{k}$ and $3\vec{i} + \vec{j}t + 5\vec{k}$

Find the value of t such that the vectors:

UNIT-III

6. (a) If $y = \sqrt{x} + \frac{1}{\sqrt{x}}$, show that $2x \frac{dy}{dx} + y - 2\sqrt{x} = 0$.

A point moves in a fixed straight line so that $s = \sqrt{t}$, show that the acceleration is proportional to the

If $x = \log t + \sin t$, $y = e^t + \cos t$, find $\frac{dy}{dx}$.

4

are

4

4

(Contd.)

a2zpapers.com

7. (a) Prove that the function
$$f(x) = x^3 - 3x^2 + 3x - 100$$
 is increasing for all real values of x.

UNIT-IV

(a) Find the sum of the series
$$\frac{1}{2} + \frac{1}{3} + \frac{1}{6} + \dots$$
 to 9 terms.

(b) If
$$3 + 3\alpha + 3\alpha^2 + ... \infty$$
 is equal to $\frac{45}{8}$, $\alpha > 0$ then find α .

(c) Evaluate
$$\int \frac{2x^2 + x}{x - 1} dx$$
.
(a) Evaluate:

7103(2518)/CTT-37536

(i)
$$\int_0^2 |x-1| dx$$
 4

(ii)
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos x \, dx.$$
 2

(b) Find the area of the region bounded by the curves
$$x^2 = 4y$$
, the line $x = 2$ and the x-axis.

4

4

(Contd.)

UNIT-V

10. (a) Find the equation of the straight line passing through (2, 3) which makes equal intercepts on the axes.

4

- (b) Find the center of the sphere which passes through (a, 0, 0), (0, b, 0), (0, 0, c) and (0, 0, 0). 8
- 11. (a) Find the equation of the circle passing through the point (4, 5) and having center at (2, 2).
 - (b) Find the equation of the parabola whose focus is (5, 2) and directrix is x 1 = 0. Find also vertex and latus rectum of this parabola.

7103(2518)/CTT-37536

100

5